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The laminar flow of a viscous incompressible fluid in the initial sec- 
tion of a flat channel is investigated on the basis of the linearized 
boundary layer equations. Formulas are obtained for the longitudinal 
velocity component and the friction at the wall. The approximate 
and exact solutions are compared, and the agreement is shown to be 
satisfactory. 

In spite of the fact that wi ththe  development  of com-  
puter  technology it has become poss ib le ,  in pr inc ip le ,  
to solve p rob l ems  of l amina r  flow without r e s o r t i n g  to 
any s impl i f ica t ions ,  it is s t i l l  impor tan t  to have ap-  
p rox imate  methods of obtaining r e su l t s  rapidly  and 
r e p r e s e n t i n g  them in analyt ic  fo rm pa r t i cu l a r ly  in con-  
nect ion with eng inee r ing  ca lcula t ions .  

Numerous  papers  have been devoted to ca lcula t ion  
of the flow in the in i t ia l  sec t ions  of flat channels  and 
c i r c u l a r  tubes.  The p r o b l e m o f  l iquid flow in the in i t ia l  
sect ion of a tube r emote  f r o m t h e  in l e twas  f i r s t  solved 
in [1]. The axial  velocity was r e p r e s e n t e d  in the fo rm 
of a sum of the Po i seu i l l e  solut ion and a pe r tu rb ing  
t e r m .  Consequent ly,  the solut ion could be applied only 
at a cons ide rab le  d i s tance  f rom the tube inlet .  

In re la t ion  to the flow in the ini t ia l  sect ion,  in [2, 3] 
Schi l ler  suggested that the velocity d i s t r ibu t ion  in the 
boundary l aye r  is parabol ic ,  and that for flow in a 
c i r c u l a r  tube the ini t ia l  sect ion ends where  the bound-  
a ry  l a y e r s  join fo rming  a parabol ic  ve loc i ty  d i s t r ibu t ion .  
Sch i l l e r '  s method was subsequent ly  ref ined  in [4, 5]. 

The flow in the in i t ia l  sec t ion  of a flat  channel  was 
examined by Leibenzon in [6] us ing  a method analogous 
to that of[2, 3]. The same  p rob lem was also solved in 
[7] by combining  the solut ion obtained by means  of a 
f ronta l  approach us ing boundary  layer  methods and 
the solut ion obtained by approach f rom behind, which 
also goes over into the parabol ic  solut ion at large x. 

A detai led inves t iga t ion  of the flow in the ini t ia l  
sec t ions  of tubes,  channels ,  and d i f fusers  on the bas i s  
of approximate  equat ions of motion was c a r r i e d  out by 
S. M. Tagg [8], who solved the p rob l em by employing  
Oseen's equations 

U ~u 1 0 p  + v O~'-~u 
Ox p Ox Oy ~ '  

Ou Ov O-Y-P = O, + - - = 0 .  
0y 0y 

(i) 

The same equations are used to solve analogous prob- 
lems in [9, I0]. 

If the friction stress on a plate is calculated from 
the solutions of these equations and compared with the 

exact value, the difference is 65%. Hence it follows 

that Eqs. (i) are rough approximations, giving exag- 

gerated values of the viscosity stress. 

A number of more recent papers have been de- 

voted to numerical methods of solving the problem of 

the flow of a v iscous  liquid in the in i t ia l  sec t ion  of 
flat and c i r c u l a r  channels .  

In [11] a n u m e r i c a l  method of solving the boundary  
l ayer  equat ions is used as a bas i s  for ca lcu la t ing  the 
flow in the in i t ia l  seet ion of a flat  channel ,  and the velo c- 
ity d i s t r ibu t ion  in di f ferent  sec t ions  along its length 
is  obtained.  A c o m p a r i s o n  of the r e s u l t  of this  
study and the data of [7] indica tes  sa t i s f ac to ry  ag ree -  
ment .  

The p rob lem of the flow of a v iscous  l iquid close 
to the channel  inlet  is ref ined in [12]. The fact is that 
close to the inle t  the boundary  l ayer  equat ions a re  in-  
applicable,  s ince  the der iva t ive  a2u/Ox 2 becomes  com-  
m e n s u r a b l e  with O2u/0y2, while the p r e s s u r e  gradient  
a c r o s s  the channel  is cons ide rab ly  d i f fe rent  f rom zero,  
so that it is n e c e s s a r y  to obtain a joint  solut ion of the 
equat ions of mot ion for the longi tudinal  and t r a n s v e r s e  
components  of veloci ty .  Therefore ,  in [12] the method 
of f inite d i f fe rences  is used to in tegra te  the exact  
Navier-Stokes partial differential equations describing 
the laminar flow in the inlet section of a channel with 
parallel walls. The distribution of axial velocities 
over the length and height of the channel thus obtained 
differs significantly from the distribution obtained by 
Schlichting [7] only close to the inlet at }/Re _< 0.0005, 
since in [12] the complete system of equations of mo- 
tion was used without any assumptions, and not the 
system of boundary layer equations. However, in view 
of the complexity of the calculations numerical results 
for the velocity distribution are presented only for 
Re = 300. At I/Re >_ 0.0005, i . e . ,  outside the range 
of action of the leading edges of the channel walls, 
the velocity profiles obtained by Schlichting and the 
authors of [12] almost coincide. 

In [13] the laminar flow in the initial section of a 
circular tube is calculated by numerical methods based 
on the boundary layer equations. A comparison of the 
data thus obtained with the data of [5] indicates satis- 
factory agreement. 

The present author has attempted to refine the me- 
thod of calculation proposed in [8, 9], which has not 
received general acceptance due to the serious errors 
in determining the coefficient of friction, especially 
on the initial section of the channel. However, if use 
is made of the constancy of the ratio of the conductive 
t e r m s  in the equation of motion [v(0u/~y)/u(~u/ax)]  
~- const ,  obtained in [14], this  method becomes  suff i -  
c ient ly  accura te .  

The bounda~:y l ayer  equat ions for s ta t ionary  mot ion 
of a v iscous  i n c o m p r e s s i b l e  l iquid have the fo rm 

c)u Ou 1 0 p  O~u 
u - -  + v -- + v - - ,  (2) 

Ox Oy 9 0 x  @~ 
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Fig. !. Variation of the quantity co over the thickness of the bound- 
ary layer for flow over a plate. 

oK + o__v = o. (3) 
Ox @ 

We will compute the ra;io of the convective terms 

in the equation of motion for the case of constant ve- 

locity atthe outer edge of the boundary layer U(x) = 

= cx m, us ing  the B la s iu s  solut ion [15]. F i g u r e  i shows 
the quant i ty  

OU / u Ou 
o~ = v ~ j /  ~x 

as a function of the ratio u/U 0 in the boundary layer. 

It follows from an examination of Fig. 1 that in the 

case of flow over a fiat plate at constant velocity the 
quantity co may be approximately regarded as constant 

over the entire thickness of the boundary layer (u/U = 
= 0-0.9) and equal to some constant w z const (in the 

given case -0.5). Then Eq~ (I) takes the much simpler 

form 

_ 02u e'uOU 1 dp + v _ _ ,  (4) 
Ox 9 dx Oy ~ 

where  

e' = I §  

We linearize Eq. (4), replacing the longitudinal 

velocity component u by its mean value over the sec- 

tion in question U, and take this substitution into ac- 

count in the newly introduced correction e. We then 

obtain 

e U Ou 1 dp -{- v 02--~-u (5) 
Ox 9 dx Oy ~ 

We use  this  equat ion to so lve  the p r o b l e m  of s t a t i o n a r y  
un i fo rm (U = const )  e x t e r n a l  flow ove r  a f la t  p la te .  
Then, by c o m p a r i n g  our  a p p r o x i m a t e  so lu t ion  with the 
exac t  B l a s i u s  so lu t ion  we can ca l cu l a t e  the c o r r e c t i o n  e. 

F o r  flow ove r  a f la t  p la te  Eq. (4) and the boundary  
condi t ions  take  the fo rm 

e U Ou 02u 
Ox @2 ' 

g = O ,  u = O ,  ~ 1 = ~ ,  u = U .  

Going ove r  to d i m e n s i o n l e s s  quan t i t i e s  

u = u/U, ~ = x/h, ~1 = y/h, Re = Uh/v, 

where  h is  an a r b i t r a r y  l i n e a r  d imens ion ,  we obtain 

05=0, 
0,15 0~ 

~ = o ,  ~ = 1 ,  n = o ,  h-=o. 
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Fig. 2. Velocity profiles in the boundary layer 

on a flat plate: i) Blasius solution, 2) calcula- 

tion based on the method of [8, 9], 3) accord- 

ing to the author's formula. 

The solution of this equation with the given boundary 

conditions is 

= 1 - e r f c  1 " 

Subst i tu t ing  the va lues  ~ = y /h ,  ~ = x /h ,  t te  = Uh/v ,  

we obtain 

In t roduc ing  the B l a s i u s  v a r i a b l e  ~ = y/(ux/U) t/a, we 
find 

The c o r r e c t i o n  E can be found f r o m  the condi t ion  
of equa l i ty  of the va lues  for  the f r i c t i on  at  the wal l  
obta ined f rom the B la s iu s  so lu t ion  and the p r o p o s e d  
so lu t ion  

0~ = V / ~  exp ( - -  7 ~)t~=o---- ~ = 0"33206" 

Hence 
= 0.34640. (6) 

Thus, the velocity profile based on the approximate 
solution can finally be written in the form 

u =  err (0.29428 ~). (7) 

Ca lcu la t ions  us ing  th is  f o r m u l a  and c o m p a r i s o n  with 
the r e s u l t s  of ca l cu la t ions  b a s e d  on the B l a s i u s  f o r -  
mula  showed that  the g r e a t e s t  d i f f e r e nc e  o c c u r s  in the 
r a n g e  ~ = 2 - 4 ,  the  exac t  value  be ing  u n d e r e s t i m a t e d  
by 7% (Fig.  2). F o r  c o m p a r i s o n ,  the s a m e  g raph  in -  
c ludes  a cu rve  c a l c u l a t e d  on the b a s i s  of the a p p r o x i -  
ma te  boundary  l a y e r  equat ions  p r e s e n t e d  in [9]. These  
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Fig. 3. Velocity dis tr ibut ion on initial sect ion of a flat channel: 
continuous l ine- -accord ing  to Schlichting 's  data [7]; broken 
l ine- -accord ing  to the authorts  data; 1) for  ~/Re = 0.001; 

2) 0.004; 3) 0.01. 
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Fig. 4. Flow in the initial section of a fiat channel 
at ~/Re = 0.0001 (1); 0.0002 (2), 0.0005 (3); 0.001 
(4); 0.002 (5); 0.004 (6); 0.006 (7); 0.008 (8) 0.01 (9); 

0.02 (10). 
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equations differ from Eq. (5) in that they lack the cor- 

rection e and are, in the words of the author [9], a 
rough approximation, known to give exaggerated values 
of the viscosity stress. 

To determine the flow in the initial section of the 
channel we used the following approximate equations: 

- -  = c ) ~ u  eU Ou 1 0 p  + v 
0~ p e .  ~ '  (s) 

0u + ~ = 0. (9) 
Ox Oy 

We wil l  f o r m u l a t e  the in i t i a l  and boundary  cond i -  
t ions .  Let  

u = v = 0  at y =  + h ,  

u = U  at x ~ 0 .  (10) 

The r a t e  of flow of l iquid th rough  each  sec t ion  of the 
f la t  channel  mus t  r e m a i n  constant :  

._. udy = 2hU. 

We in t eg ra t e  Eq, (8) with r e s p e c t  to y f r o m  - h  to 
h and as  a r e s u l t  find the value of the p r e s s u r e  g r a -  
d ient  

p dx 2-h v=a-- v=-~ . (11) 

Expression (14) is not convenient for small distances 

from the inlet since it is necessary to take too large 
a number of terms of the series. Accordingly, we 
write the expression for the transform in the follow- 

ing form: 

> = •  - { / ~  {~xp [ - / ~  ( 1 -  ~)] + 

+ e x p [ - - r  r -~ ~)]} - -  

--[1--'exp (r-2/H--s)]} {s (~/H-s--1)x 
[ v +l ]}-'. 

• I +  ]/-H-s--1 exp ( - - 2 ~ s )  

Expanding the e x p r e s s i o n  

1+ ~ r ~ + l  / N - I  ~xp ( - 2 / N ) ]  

in a g e o m e t r i c  s e r i e s  and confining o u r s e l v e s  to the 
f i r s t  t e r m  we obta in  

u* = _1 + {f-m [exp ( -  KBT(I-n)) + 
S 

+ exp ( - -  t/-H-s (1 + rl))}'-- [1-- exp ( - -2  l/H--s )]}x 

• {s ( i - - , / -~)} - ' .  

Subst i tu t ing  the value  of the p r e s s u r e  g r a d i e n t  in 
Eq. (8) and going ove r  to the d i m e n s i o n l e s s  quant i t i es  
~, ~, V, Re, whe re  h is  hal f  the d i s t a n c e  be tween  the 
channel  wa l l s ,  we obta in  

0~ ~ 0~ 2 ~ ~=I-- " 

Applying  a Lap l ace  t r a n s f o r m a t i o n  to  th i s  equat ion we 
obtain 

d-----v---eRe (su*-- l )  = - ~  L~ d'q ]n=l ~, d'q ]~=-I ' 

n = -'c-i, u* = 0. (12) 

The solut ion of Eq. (12) is  

s s ( r  ch V ~ -  sh d i n )  
(13) 

where  H = ~Re.  
F o r  the i n v e r s e  t r a n s f o r m  we obtain 

Passing to the inverse transform we obtain an ex- 
pression for the velocity distribution that is valid at 

small distances from the inlet: 

• + --U:" " 

On the in i t i a l  s ec t ion  of  the channel  at  } /Re  _< 0.01 
and at  V _> 0, i . e . ,  in the uppe r  ha l f  of the channel ,  
the ve loc i ty  p ro f i l e  can be c a l c u l a t e d  f r o m  the fo l low-  
ing s i m p l i f i e d  fo rmu la :  

I u-----exp(~/H) l + e r f  - -  exp H 

u= 3 
-~ (i- n 2) - 

- -2  .-:T I - -  - -  exp - -~2  n , (14) 
n = l  [xn COS ~t n 

where  Pn a r e  the s u c c e s s i v e  r o o t s  of the equat ion 
t g p  = #. 

At an inf in i te ly  l a r g e  d i s t ance  f r o m  the in le t  of the 
f la t  channel  (~ ~ o~) the  d i s t r i bu t i on  of ax ia l  ve loc i ty  
ove r  the sec t ion  wil l  be p a r a b o l i c :  

u =  3 -S (l-n~) (15) 

(17) 

It is clear from Fig. 3 that the data obtained in [7] 

and in the present study differ by not more than 10%. 

Thus, the proposed method of calculating the vel- 

ocity fields in the initial section of a fiat channel is in 

quite good agreement with previously developed meth- 

ods and, moreover, gives a simple analytic expression 

for the velocity profile and the coefficient of friction. 

By way of example, Fig. 4 shows the velocity pro- 

files at different sections of a flat channel. 
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On the basis of the analytic expression for the ve-  
locity distribution (14) it is possible to find the dimen- 
sionless shear s t ress  at the wall 

2 ~ Re "% l auL==[3+2~exp(-~n~)] / . (18) 
U ~ = ~ee a--~ , , = ,  
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