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The laminar flow of a viscous incompressible fluid in the initial sec-
tion of a flat channel is investigated on the basis of the linearized
boundary layer equations. Formulas are obtained for the longitudinal
velocity component and the friction at the wall. The approximate
and exact solutions are compared, and the agreement is shown to be
satisfactory.

In spite of the fact that withthe development of com-
puter technology it has become possible, in principle,
to solve problems of laminar flow without resorting to
any simplifications, it is still important to have ap-~
proximate methods of obtaining results rapidly and
representing them in analytic form particularly in con-
nection with engineering calculations,

Numerous papers have been devoted to calculation
of the flow in the initial sections of flat channels and
circular tubes. The problem of liguid flow in the initial
section of a tube remote from the inlet was first solved
in [1}. The axial velocity was represented in the form
of a sum of the Poiseuille solution and a perturbing
term. Consequently, the solution could be applied only
at a considerable distance from the tube inlet.

In relation to the flow in the initial section, in {2, 3}
Schiller suggested that the velocity distribution in the
boundary layer is parabolic, and that for flow in a
circular tube the initial section ends where the bound-
arylayers joinforming a parabolic velocity distribution.
Schiller's method was subsequently refined in{4, 5].

The flow in the initial section of a flat channel was
examined by Leibenzon in [6] using a method analogous
to that of{2, 3]. The same problem was also solved in
[7] by combining the solution obtained by means of a
frontal approach using boundary layer methods and
the solution obtained by approach from behind, which
also goes over into the parabolic solution at large x.

A detailed investigation of the flow in the initial
sections of tubes, channels, and diffusers on the basis
of approximate equations of motion was carried out by
S. M. Tagg [8], who solved the problem by employing
Oseen's equations
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The same equations are used to solve analogous prob-
lems in [9, 10].

If the friction stress on a plate is calculated from
the solutions of these equations and compared with the
exact value, the difference is 65%. Hence it follows
that Egs. (1) are rough approximations, giving exag-
gerated values of the viscosity stress.

A number of more recent papers have been de-
voted to numerical methods of solving the problem of

the flow of a viscous liquid in the initial section of
flat and circular channels.

In [11] a numerical method of solving the boundary
layer equations is used as a basis for calculating the
flowin the initial section of a flat channel, andthe veloc-
ity distribution in different sections along its length
is obtained. A comparison of the result of this
study and the data of [ 7] indicates satisfactory agree-
ment.

The problem of the flow of a viscous liquid close
to the channel inlet is refined in [12]. The fact is that
close to the inlet the boundary layer equations are in-
applicable, since the derivative 9%/0%x% becomes com-
mensurable with 6%u/8y?, while the pressure gradient
across the channel is considerably different from zero,
so that it is necessary to obtain a joint solution of the
equations of motion for the longitudinal and transverse
components of velocity, Therefore, in [12] the method
of finite differences is used to integrate the exact
Navier-Stokes partial differential equations describing
the laminar flow in the inlet section of a channel with
parallel walls. The distribution of axial velocities
over the length and height of the channel thus obtained
differs significantly from the distribution obtained by
Schlichting [7] only close to the inlet at £/Re = 0.0005,
since in [12] the complete system of equations of mo-
tion was used without any assumptions, and not the
system of boundary layer equations. However, in view
of the complexity of the calculations numerical results
for the velocity distribution are presented only for
Re = 300. At ¢/Re = 0.0005, i.e., outside the range
of action of the leading edges of the channel walls,
the velocity profiles obtained by Schlichting and the
authors of [12] almost coincide,

In [13] the laminar flow in the initial section of a
circular tube is calculated by numerical methods based
on the boundary layer equations. A comparison of the
data thus obtained with the data of [5] indicates satis-
factory agreement.

The present author has attempted to refine the me-
thod of calculation proposed in [8, 9], which has not
received general acceptance due to the serious errors
in determining the coefficient of friction, especially
on the initial section of the channel. However, if use
is made of the constancy of the ratio of the conductive
terms in the equation of motion [v(au/ay)/u(au/ax)] =
= congt, obtained in {14], this method becomes suffi-
ciently accurate.

The boundary layer equations for stationary motion
of a viscous incompressible ligquid have the form
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Fig. 1. Variation of the quantity w over the thickness of the bound-
ary layer for flow over a plate.
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We will compute the ratio of the convective terms
in the equation of motion for the case of constant ve-
locity at the outer edge of the boundary layer U(x) =
=¢xM, using the Blasius solution [18]. Figure 1 shows
the quantity

du ou
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as a function of the ratio u/U in the boundary layer.

1t follows from an examination of Fig. 1 that in the
case of flow over a flat plate at constant velocity the
quantity w may be approximately regarded as constant
over the entire thickness of the boundary layer (u/U =
= 0-0.9) and equal to some constant w = const (in the
given case ~0.5). Then Eq. (1) takes the much simpler
form

2,
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We linearize Eq. (4), replacing the longitudinal
velocity component u by its mean value over the sec-
tion in question U, and take this substitution into ac-
count in the newly introduced correction ¢. We then
obtain
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We use this equation to solve the problem of stationary
uniform (U = const) external flow over a flat plate.
Then, by comparing our approximate solution with the

exact Blasius solution we can calculate the correctione,

For flow over a flat plate Eq. {4) and the boundary
conditions take the form

2
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y=0, u=0, y=ow, u=U

Going over to dimensionless quantities
u=u/U, & =x/h, q=y/h, Re=Uh/v,

where h is an arbitrary linear dimension, we obtain
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Tig. 2. Velocity profiles in the boundary layer

on a flat plate: 1) Blasius solution, 2} calcula-

tion based on the method of [8, 9], 3) accord-
ing to the author's formula.

The solution of this equation with the given boundary
conditions is

u [ n m)
F:I—erfclyl/——g— -

Substituting the values 7 =y/h, £ =x/h, Re = Uh/»,

we obtain
Y oat—erie | L f_g)
U 2 v

Introducing the Blasius variable ¢ = y/vx/U)Y2, we
find

u=1—erfc (% l/;)

The correction ¢ can be found from the condition
of equality of the values for the friction at the wall
obtained from the Blasius solution and the proposed
solution

ou e £ )] g
__=|/__ex —— 2 =|/ — = 0.33206.
ag fs p( 4 ¢ =0 T

Hence
& = 0.34640. (6)

Thus, the velocity profile based on the approximate
soiution can finally be written in the form

u = erf (0.294287). N

Calculations using this formula and comparison with
the results of calculations based on the Blasius for-
mula showed that the greatest difference occurs in the
range ¢ = 2-4, the exact value being underestimated
by 7% (Fig. 2). For comparison, the same graph in-
cludes a curve calculated on the basis of the approxi-
mate boundary layer equations presented in [9]. These
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Fig. 3. Velocity distribution on initial section of a flat channel:
continuous line—according to Schlichting's data [7]; broken
line—according to the author's data; 1) for £/Re = 0.001;

2) 0.004; 3) 0.01,
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Fig. 4. Flow in the initial section of a flat channel

at £/Re = 0,0001 (1); 0.0002 (2), 0.0005 (3); 0.001

(4); 0.002 (5); 0.004 (6); 0.006 (7); 0.008 (8) 0.01 (9);
0.02 (10).
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equations differ from Eq. (5) in that they lack the cor-
rection ¢ and are, in the words of the author [9], a
rough approximation, knowntogive exaggerated values
of the viscosity stress.

To determine the flow in the initial section of the
channel we used the following approximate equations:

2.
ey Lo Ou ®)
Ox p dx oy*
du  Ov
— 4 =0 9
Ox +0y ®)

We will formulate the initial and boundary condi-
tions. Let

u=v=0 at y=+4,

u=U at x=0 (10)

The rate of flow of liquid through each section of the
flat channel must remain constant:

A
5‘ udy = 2hU.

—h

We integrate Eq, (8) with respect to y from ~h to
h and as a result find the value of the pressure gra-

dient
oo - ] w
o dx 2k |L\OYJy—t \OY/jy——r

Substituting the value of the pressure gradient in
Eq. (8) and going over to the dimensionless quantities
i, £, 1, Re, where h is half the distance between the
channel walls, we obtain

fi e - L(E) ()]

o 0F 2 [\on/smt \On/7=a
Applying a Laplace transformation to this equation we
obtain

dur - 1 [( du* ) (du“*) ]
———¢&R =5 |{— 1] — )
dr? eRe (s ) 2 dn Jy=1 dN Jy=—i

n=+1, u*=0. (12)
The solution of Eq, (12) is

~_ 1 _ VHsch(VHsn)—shvHs )

s s(V Hsch YV Hs—shy/ Hs) '

where H = ¢Re.
For the inverse transform we obtain

_.M)exp (____ Zé), (14)

where u, are the successive roots of the equation
tgp=p.

At an infinitely large distance from the inlet of the
flat channel (£ — «) the distribution of axial velocity
over the section will be parabolic:

_ B3
W= (1), (15)
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Expression (14) is not convenient for small distances
from the inlet since it is necessary to take too large
a number of terms of the series. Accordingly, we
write the expression for the transform in the follow-
ing form:

;*=T1_{1/H§ lexp [— v/ Hs (1—n)] +
+exp[—y/ Hs (1 + n)]} —

—[1—exp (fzﬂrs)]} {s (/ Fs—1)x

7o —1
x[l—{- —%% exp (—2v Hs)]}
Expanding the expression
14 VL e (—2v/7R)

in a geometric series and confining ourselves to the
first term we obtain

-1 + [V Hs [exp(— v/ Hs(1—m) +

+exp (— /H—S(H-n))]f‘f— [1—exp (—27/Hs )] }x

x{s (1—vHs )|

Passing to the inverse transform we obtain an ex-
pression for the velocity distribution that is valid at
small distances from the inlet:

u = exp(¥/H) (1—}-erf I/—%—) ——exp[%——(l—n)] x

I—n, /H) _ g
l/E) exp[‘g‘/’H (l+n)]x

x erfc (—4‘/-73_——&-1
X erfc( I/H + —— 1+" I/H)—!-erfc l/__E: (16)

On the initial section of the channel at £/Re =< 0.01
and at n = 0, i.e., in the upper half of the channel,
the velocity profile can be calculated from the follow-
ing simplified formula:

u= exp (¢/H) (H—erf 1/%—)~ exp [% —_

—(1 _n)J erfc (—‘/_%Jrl;z’l l/g) (17)

It is clear from Fig. 3 that the data obtained in [7]
and in the present study differ by not more than 10%.

Thus, the proposed method of calculating the vel-
ocity fields in the initial section of a flat channel is in
quite good agreement with previously developed meth~
ods and, moreover, gives a simple analytic expression
for the velocity profile and the coefficient of friction.
By way of example, Fig. 4 shows the velocity pro~
files at different sections of a flat channel.
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On the basis of the analytic expression for the ve-
locity distribution (14) it is possible to find the dimen-
sionless shear stress at the wall

T Laa] _[312% e (—-2 § H/R& 18
pU®  Re 07y [Jr,g pA thoRe ()
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